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We derive the equations of motion of systems with second~order nonlinear non-
holonomic constraints, As the foundation we choose the Gauss principle accord-
ing to which the real accelerations ensure at each instant the minimum of the
Gauss function in the class of all possible accelerations admissible by the sys-
tem’s constraints,

1, Various forms of the equations of motion of a system
with nonlinear nonholonomic constraints, We consider a system of ma-
terial points My with masses my (k = 1, 2, ..., N), whose position is determined by the
generalized coordinates ¢; (i = 1, 2, ..., n). We assume that second-order nonlinear
nonholonomic constraints have been imposed on the system, i, e, constraints whose equa-
tions are [1]
fa by @iy ai’y a7 ) =10 (@=1,2,., 55i=1,2, ..., n) (1.1)
We apply the Gauss principle to derive the equations of motion of systems with con-
straints (1,1). To do this we set up the Gauss function
N
U — %_ m, (wk_Fk/mii)2
k=1
Here wy is the acceleration vector of material point My, Fy is a given force acting on
the material point M;. We expand the Gauss function

N N
1 _ 1
U=s5—>) kak+_2_21?k2/mk, S_szkwk2 1.2)
k=1 k=1
The position of the material point M} is determined by the vector ry = ry (¢, ¢;), its
velocity and acceleration are n

. or . . or
vk:rk:Z kqi+_"_

= oq; ot
e < 8rk .
w,=r/'"= ?rqi + A
i=1 t
where A is a collection of terms not depending on ¢;"". Consequently,

Fio = F (t, v, vi) = Fy (¢, 41, i) (1.3)
§ =S (ty qi, (I‘i'y q’i“) (1'4)
oWy [ 0q”" < Ovy [ Bg;” (1.5)

Using various methods of minimizing the Gauss function, we obtain various (equivalent)
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forms of the equations of motion,
1°, We compose the function

UvZM

Here A, are undetermined factors, f, are constraint equations of the form of (1, 1), The

condition for the minimum of function & relative to the variables ¢ is d®/dg;"" -= 0.
Hence the equation of motion of the system is
s N
or

=Q,— Z A Q. = F K .

a « . — 1.6

’IL — 6q i I\§1 k ﬁqi {1.6)

(i=1,2,...,n)

Here @, is the generalized force and S has the form (1,4), The system of constraint
equations (1.1) should be added on to the Egs, (1.6).
2°, We consider the case when the Jacobian

fl fz,.“,fs)

pr1? '1p+2’ ceen )

D #+0 (1.7

where p = n — s is the number of independent generalized accelerations, We can then
express the quantities ¢,” in terms of ¢ =

9n I (Ey divqin gy, ), {I*qh = Z glwd*qv (1.8)

v=1,2,..., p h=p+1, p+2,..., n
Here g,, = g, ({, ¢;» ¢, ¢,”’) and the differential operator d* acts only on the variables

;" (while the variables #, ¢i, i’ should be taken to be constant),
From the condition of the minimum of the function U relative to the variables g¢;"

follows P
I7] -
[ d + 2 —_— g/w:ld*(lv == 0

2 aqv aqh

v==] ]l%

Taking (1. 2) into account, we have the equations of motion in the form

n
254 2 ——gth + D) anQ =12, p) (1.9)
2.
qv h=p+1 qh h=p+1
N
0rk < al'k
- glpk a7 :%1 Fy 5, (1.10)

Here S has the form (1, 4).
3°. Having substituted (1. 8) into function U, we obtain the equations of motion
of the system being considered

9S8
? = Q + Z gthh (v = 1,2, ... 1p) (111)

h=p+1

n

where § = S (1, ¢;, ;> ¢, ), while @, and @, should be computed by formulas (1,10).
4 ¢ Let .
n, =g, qn i, q;) v =12...,p)
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and let the condition
D(fisfe, .. 21 81,85 ... ,8p)

Dg 05,00 4,)

=0 (1.12)

be fulfilled, Then the condition for the minimum of function U can be written in the
form U / dn,"" = 0. Taking (1.5) and the relation

n e
8wk OWR 043
v i=1

into account, we obtain the equations of motion of the system

3

a8

aq.
o D Qiawl.. S, (ve=12,...,p) (1.13)

v i=1 v

where § = S (¢, ¢;, ¢;", nt,”"), while 7, is the generalized force corresponding to the
generalized pseudocoordinate,

Example, We consider the spherical motion of a rigid body with a nonholonomic
constraint {1], The condition of generalized precession of vector @ as a nonholonomic
constraint has the form [1]

(P — dp’) + 7 (P + @) — A (P24 @2 =0
The body’s acceleration energy has the form [1]

1
S == [Ap? 4 Bg2 4 Cr2 4 2(C— By qrp’ + 2 (A — C) rpg’ + 2 (B— A) pgr' + .. ]

Here and below the terms discarded do not contain ¢, 6', ¢
Using the Euler formulas we have
p = " sin 0sin ¢ - 0 cos ¢ 4 ...
g =P sin 0 cos ¢ — B sin ¢ - ...
=19 cos 0+ ¢ +...

We introduce the pseudo-accelerations ., ™", by setting 0 =: 0'n,”", ¢~ = m"".
Then . e

pPP=m"p G, ¢ =g+ ..., F Y cos 84 w4
Terms not containing ", m:"" have been discarded in the right-hand sides of these

formulas,
Noting that

05 _ 98 dp 4 98 8y S o yo
X3 o '6—-— w~ a 0 *
8:15 ap 0nj q 8nj r 6:1]
we obtain the equations of motion
Cr' — (A — B)pg=0Q,
Cry’cos 6 + App” -- Bqq' 4 (A — B) pap’ = V'Q, + 6°Qy

Thus, we arrive by a simpler path to the result which follows from Tzénoff's equations
[11.

5°. Using the identities
a8

aq;

_d T __ar (1.14)
At dg  9g; ’

where T = T (t, 4;, ¢;') is the system's kinetic energy, and S has the form (1.4), we
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write Eq, (1.6) as
d or
dt 8(]1

(=12...,n (1.15)
a=1 a([‘l,

6°. Taking relations (1, 14) into account, Egs, (1. 9) can be represented in the

form
4 9T
TN 6(]v+ 2

n=p+l

Q,+ 2 g,Qn  v=12,....p) (1.16)

h=p+1

d T _ 4T
v\ar dg,  oq,

Here 7 = T (¢, q;, 9i°).

Appel’'s example (see [2, 3]), Taking into account the remark in [3], we can
write the expressions for the kinetic and potential energies and the constraint equation
as T =1m (s 4y2 427, M=—mgs

P14y =0
Hence
Hey, sy 2wy, 5 ) = —ad @ o yy) =0

After simple manipulations, from Eqs, (1.16) we have

W, @ (@ YY) z

="+ Ty =T Yoy g
I e X A Y
¥+ PN =-—ga Vot +

The equations obtained agree with those established in [3].
7°, We use the relations

n * .
98 9 99; ( 4 or oy O
T, = dt dq;  9q;/ 87\:‘;.

Then from (1.13) we have
ks n
d orT 8q1 391
El (—dt—aq,- 0q, ) 2 (v=12...,p) (.47

T= Tt 4)

Example, We examine the motion of a material point in a central field of New-
tonian attraction forces, The absolute value of the point’s velocity is a constant, By
considering the motion in the spherical coordinates r, ¢, with origin at the attracting
centar, we represent the constraint in the form [1]

Here

1
fr.8,9,7,0,9)=—m (r'2 4+ r2 cos?092 4- r?0°2) = const (1.18)

This equation can be written as
A r3cos? 0T 2097 ... =0

where the terms not written down do not contain r'*, 87, ¢7.
We introduce the pseudo-accelerations ™", ", by setting m;"" = r20°0"", 2’ =
r'r. Then
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() .

where the discarded terms do not contain m;”", m»"". After simple manipulations, from
Egs, (1.17) we have

. 1
? =2costOg

. . M
r _re.z_%_q)..—zz_r__ —}—28'r' tge_zq)-z 00520 =—T_;z—

0 .
r8" + rip3sinB cos § —r2 5w @7 - 21207 tg 6 =0

These equations together with the constraint equation (1,18) allow us to find the un-
knowns desired, The equations obtained have the very same form as in {3} if in the lat-
ter we eliminate the factors,

Note, The equations written down are obviously applicable also for systems with
holonomic constraints, linear nonholonomic constraints, and first-order nonlinear non-
holonomic constraints, Equations (1.16),(1.17) simplify the computations for setting
up the equations of motion, If the generalized velocities enter linearly in the constraint
equations, then these equations agree with the Magie equation [1, 2].

2, The Nielsen equation for systems with second-order nonli-
near nonholonomic constraints, Using the relations

N
. 6wk avk awk 6vk
- 2 TRVEWK  Gq T0q, ' dqi o
k=1
it is easy to prove the identity
0S T 90T p_7(t,q;,47), T =dT/dt @.1)

dq;.  9q; aq;

Here § is of form (1.4), The system's equations of motion take one of the following
forms :

o, oT _
87 e TUT bt
ZZ; _2_+ Z (aT _zg;):QH‘ D Qush 2.2)

h=p+1

M:

or" ag;" aq
- 2 ) i s 2
(aQi 8(11 2 Q

Let us consider the motion of a system with the first-order nonholonomic constraints

e

1

D, (g, qu)=0 2.3
Equations (2, 3) can be written as
H‘ 6@1 5
fo b gi g, 07 ) G ob =0 @4
i=1

where the terms not written out do not contain ¢;”". From (2, 4) follows the relation

9f, [ 09, = 0D/ dg;" and, consequently, the first equation in (2, 2) becomes
ar 20,
— 2.5
el aq Qi Dk (2.5)

a=s]

Finally, if holonomic constraints are imposed on the system, then A, = 0 in (2, 5).
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Equations (2, 5) obtained agree with those presented in [1],

3, The Tzénoff's equation of the second kind, It can be shown that
N
T =285 -+3 Z mEvgwy' - B (3.1)
k=1
where B is a collection of terms not containing the first-order derivatives of the accel-
erations of the points, Since

n
(9Wk. . (,)\'E l\k
T 7
from (8, 1) we obtain "
o,
S=p+D, po [T 2 i

Here ¢, D are collections of terms not containing ¢;". Now the system’s equations

of motion take one of the following three forms:
n

R 0f 4 oR g
- = — = ==0
[‘)qi 2 *aq;” 1;{ dq, dm,
OR o AR <
or AL ( R—p-— i
aqv.. T 72, th"ghv 2_" Qid: )
h=p+1 i=1

The last equation agrees with the one presented in [1],
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