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We derive the equations of motion of systems with second-order nonlinear non- 
holonomic constraints. As the foundation we choose the Gauss principle accord- 
ing to which the real accelerations ensure at each instant the minimum of the 
Gauss function in the class of all possible accelerations admissible by the sys- 
tem’s constraints. 

1. Various formr of the equation8 of motion of a system 
with nonlinear nonholonomic constraintr. We consider a system of ma- 
terial points MI, with masses mk (k = 1, 2, . . . . N), whose position is determined by the 
generalized coordinates pi (i = 1, 2, . . . . n). We assume that second-order nonlinear 

nonholonomic constraints have been imposed on the system, i. e. constraints whose equa- 
tions are [l] 

f, (k, qi, 4i.r qi”) = 9 (a = 2, 2 ,..., s; i = 1, 2, . . . . n) (1.1) 

We apply the Gauss principle to derive the equations of motion of systems with con- 
straints (1.1). To do this we set up the Gauss function 

N 

U = f 2 rnk(wk-Fk/mkY 

k=l 

Here Wk is the acceleration vector of material point Mk, Fk is a given force acting on 
the material point ink. We expand the Gauss function 

(I;S--Fkwk++~P,Zhk. S=$imkwk 
k=l k=l k=l 

(1.2) 

The position of the material point MI, is determined by the vector rk = rl( (t, qi), its 
velocitv and acceleration are n 

n ar 
wk = rk” = zl $ q i” +- “I 

where A is a collection of terms not depending on qi”. Consequently, 

Fk X Fk (t, rk, Vk) = Fk (t, ‘,i, r/i’) (1.3) 

s = s (t, qi, <Ii’, qi”) (1.4) 

ilwh_ / aqi” i)l’h. 1 aqi” (1.5) 

Using various methods of minimizing the Gauss function, we obtain various (equivalent) 
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forms of the equations of motion. 

1”. We compose the function 

Here 1, are undetermined factors, fu are constraint equations of the form of (1.1). The 

condition for the minimum of function U relative to the variables cli” is a@ / ayi” 2 0. 
Hence the equation of motion of the system is 

(1.6) 

(i =-= 1, 2,..., n) 

Here Qi is the generalized force and S has the form (1.4). The system of constraint 
equations (1.1) should be added on to the Eqs. (1.6). 

2”. We consider the case when the Jacobian 

(1.7) 

where p = n - s is the number of independent generalized accelerations. We can then 

express the quantities Q,” in terms of ‘I,” 

(Y = 1, 2,..., p; h :-- p f 1, p + 2,..., n) 

Here &,, = glLv (t, qi, qi’, q,“) and the differential operator d* acts only on the variables 

qi” (while the variables t, “lit 4i’ should be taken to be constant). 
From the condition of the minimum of the function II relative to the variables pi” 

follows ju 

ZL 
au+ 
89;’ 

i a- fi/[” ] a*(/; := 0 

“=I Il=p+l “ 

Taking (1.2) into account, we have the equations of motion in the form 

s + i -% g/t" ; Q, -t i g,,.,Q,, (Y =: 1,2,. . . , p) (1.9) 

Y Jl=ptl aqr, h=p+1 

Q”=&k~. 

N 

Qh = 2 Fkz (1.10) 
h’=l ” h‘=l 

Here S has the form (1.4). 

3’. Having substituted (1.8) into function U, we obtain the equations of motion 
of the system being considered 

AS 
- := Q, -t i glrvQ/, +v (v -=lJ,...,p) 

h-Ml 

(1.11) 

where S’ = S (t, qi, qi’, ‘I,‘~ ), while Q,, and Qh should be computed by formulas (1.10). 
4’. Let 

xi’ < g, It> ‘/i? ‘li’, (Ii’ 1 (v = l,“, , p) 
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and let the condition 
1) (fl7 I?, . * fs, g1, g,, . , gp) 

D @I;’ 1 (I;’ 9 . . ( , q,‘, 
*o (1.12) 

be fulfilled. Then the condition for the minimum of function U can be written in the 
form aU I an,” = 0. Taking (1.5) and the relation 

into account, we obtain the equations of motion of the system 

(1.13) 

where S = S (t, 9i, 9i’, n,“), while n, is the generalized force corresponding to the 
generalized pseudocoordinate. 

Example. We consider the spherical motion of a rigid body with a nonholonomic 
constraint Cl]. The condition of generalized precession of vector o as a nonholonomic 
constraint has the form Cl] 

(pq’ - dp’) + r ($9 -j- (12) - Ir. (p2 + q+ = 0 

The body’s acceleration energy has the form [l] 

s=L_ 2 [ilp“? + B9’” + Cr’” -I-- 2 (C - B) yrp’ + 2 (_ 1 - C) rpq’ $ 2 (B - il) pqr’ + .] 

Here and below the terms discarded do not contain $)“, O”, v”. 
Using the Euler formulas we have 

p’ = 9’” sin 0 sin q -+ 0” cos cp + . . . 
y’ = +” sin 0 cos cp - tl” sin cp + . . . 
r’ = $I” cos 0 + ‘p” + . . . 

We introduce the pseudo-accelerations nl”, Q,“, by setting 8” -- O’n,“, cp” = n2”. 

p’ = nl”p $ . . . . y’ = n1”q + . . . . r’ em Jll”l#. cos 8 + no,” + 1.. 

Terms not containing XI”, ntl-’ have been discarded in the right-hand sides of these 
formulas. 

Noting that 
. . _ as. aP* + as 89’ _+ 8s ar. as 

anj ap q 
-- 
af aa,” 

-_ (i= 1,2) 
ar* an;. 

we obtain the equations of motion 
Cr’ - (A - B) pq = Q, 

Cr’g’cos 8 + App’ -I- Byy’ + (A - B) pq(p’ = $)‘Q$ + O’Q@ 

Thus, we arrive by a simpler path to the result which follows from Tze’noff’s equations 

VI. 
5“. Using the identities 

as d i3T ar 

a&. dt 8qi’ %i 

(1.14) 

where T = T (t, 9ir %‘) is the system’s kinetic energy, and S has the form (1.4). we 
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write Eq. (1.6) as 
d 8T 8T -y---_= +, Qi- i ia> (i=1,2,..., n) 

dt %i 1 n=1 i 

form 

(1.15) 

6”. Taking relations (1.14) into account, Eqs. (1.9) can be represented in the 

Q,+ z ghvQh (v =1,2,. . . 1 P) (1.16) 

11=p+1 

Here T = T (t, qi, qi’). 
A p p e 1 ’ s e x a m p 1 e (see [2, 31). Taking into account the remark in [3], we can 

write the expressions for the kinetic and potential energies and the constraint equation 

as T = l,Jzm (.c’~ f y’? f ~‘2). II = - mgz 
z’1 _ a3 @‘” + y’2) = 0 

Hence 
f (2, y, z, 2’, ?I’, z’, z’., ?j”, z”, t) = 2’2” - aa (z’z” + y’y”) = 0 

After simple manipulations, from Eqs. (1.16) we have 

u2x’ (x*x- + y’y”) 
. 

2” + x-2 + y-2 =---a vx& 
a2y’ (x’x’. + y’y”) 

. 

?I” + x-2 + y-2 =--4 fx& 
The equations obtained agree with those established in [3]. 

IO. We use the relations 

Then from (1.13) we have 

$I($$-$J$=i Qi$ (Y = 1,2, . . . ( p) (1.17) 
t t Y i=l ” 

Here 
T = T (t, rli, 4i’) 

Example. We examine the motion of a material point in a central field of New- 

tonian attraction forces. The absolute value of the point’s velocity is a constant. By 

considering the motion in the spherical coordinates r, cp, t) with origin at the attracting 
center, we represent the constraint in the form [l] 

f (r, 6, cp, r’, 6’, cp’) Y -& ~2 (~‘2 + r3 co9 @.J3’~ _1- r%‘“) = const (1.18) 

This equation can be written as 
. . . 

rr + r? co53 l@‘q” -t r%‘t3” -+ . . . = 0 

where the terms not written down do not contain r”, 6”, V**- 
We introduce the pseudo-accelerations XI”, x[L”, by setting x,” = ?8’0”, n3” = 

r-r”. Then 
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where the discarded terms do not contain nl”, n2”. After simple manipulations, from 

Eqs. (1.17) we have 

These equations together with the constraint equation (1.18) allow us to find the un- 
knowns desired. The equations obtained have the very same form as in [S] if in the lat- 
ter we eliminate the factors. 

Note. The equations written down are obviously applicable also for systems with 
holonomic constraints, linear nonholonomic constraints, and first-order nonlinear non- 

holonomic constraints. Equations (1.X), (1.17) simplify the computations for setting 
up the equations of motion. If the generalized velocities enter linearly in the constraint 
equations, then these equations agree with the Magie equation [1, 21. 

2. The Nielren equation for ryatem8 with second-order nonlf- 
near nonholonomfc constraints, Using the relations 

iv 
awk awk 

T’= 2 qvkwk, F=z, s;-=o$ 
2 

k=l 
z I 

it is easy to prove the identity 

AS’ 8T’ 
CYqi” 

.-2$-9 
aqi t 

T=T(tyqiyqi’), T’=dT/dt (2.1) 

Here S is of form (1.4). The system’s equations of motion take one of the following 
forms : 

l3T’ 
2+$+ i &(~.--2j9 =Q,+ 5 Qhghv 

c- ” 
h=p+l h=p+l 

2(%-2g)$=i Qi$ 
i=l ” 

(2.2) 

Let us consider the motion of a system with the first-order nonholonomic constraints 

@‘sr (L Qi, 4i’) = 0 (2.3) 

Equations (2.3) can be written as 

i-1 
where the terms not written out do not contain qi”. From (2.4) follows the relation 

df, : &Ii” = A@, / “qili’ and, consequently, the first equation in (2.2) becomes 

(2.5) 

Finally, if holonomic constraints are imposed on the system, then h, z 0 in (2. 5). 
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Equations (2.5) obtained agree with those presented in [l]. 

3. The Ta/noff’a equation of the Becond kind, It can be shown that 

T".z 2s -; 3 i I)z~\.~w~' -i- B (3.1) 
k=l 

where B is a collection of terms not containing the first-order derivatives of the accel- 
erations of the points. Since n 

from (3.1) we obtain . , 

Here C, D are collections of terms not containing rli”. Now the system’s equations 

of motion take one of the following three forms : 

The last equation agrees with the one presented in [l]. 
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